Foro Cursos Ciencia DONAR Iniciar Sesión

Noticias de ciencia y artículos de la Facultad

Imagen Directa de la Función de Onda de una Molécula de Hidrógeno

física física cuántica Jan 23, 2018

La función de onda es un objeto matemático que contiene toda la información medible sobre la partícula que describe. Utilizada con la ecuación de Schrödinger, esta predice el comportamiento de un sistema dinámico utilizando las leyes de conservación y newtonianas. Como objeto teórico, la función de onda no puede ser observada. Sin embargo, el cuadrado de la función, que representa la probabilidad de encontrar la partícula en un lugar determinado, es un observable y ha sido recientemente visualizado directamente por un equipo de Frankfurt (Alemania).

Los científicos eligen observar la molécula de hidrógeno, la más simple, que presenta dos protones y dos electrones. En esta configuración, se crean dos orbitales moleculares mediante la aproximación de combinaciones lineales de orbitales atómicos. La molécula de hidrógeno tiene tantos...

Continuar leyendo...

Piedra Egipcia es Anterior al Sol

Por: Dra. Amira Val Baker, Astrofísica de Resonance Science Foundation 

El reciente análisis de una piedra encontrada en la zona del cristal del desierto de Libia, en el suroeste de Egipto, ha suscitado un debate y un replanteamiento del consenso actual sobre la formación del sistema solar.

En este estudio, un equipo de investigadores internacionales ha dado a conocer el resultado del análisis de una piedra que posteriormente fue bautizada como Hypatia, en honor a la antigua astrónoma de Alejandría.

Utilizando técnicas que van desde la microscopía de barrido de electrones hasta la emisión de rayos X inducida por protones y la espectroscopia micro-Raman, los resultados revelaron compuestos que no se encuentran en ningún lugar de nuestros planetas del sistema solar ni de ningún meteorito conocido. Además, se detectó una ausencia de silicatos que lo diferencia de las partículas de...

Continuar leyendo...

Nueva Técnica Computacional para Resolver la Ecuación de Schrödinger Para Muchas Partículas

Uno de los objetivos de la teoría de la estructura electrónica es describir con precisión sistemas poliatómicos cada vez más complejos. La cuestión más difícil en este tipo de problemática de muchos cuerpos es describir la correlación de los electrones. Mientras que el 99% de la cuestión se resuelve con el principio de variación clásico, en el 1% restante ocurre mucha física importante. Para estudiar este 1%, existen tres métodos conocidos y uno de ellos se denomina Teoría de Cúmulos Acoplados.

La suposición básica de la teoría de cúmulos acoplados es que la función de onda exacta de muchos electrones puede generarse mediante la operación de un operador exponencial sobre un único determinante. El operador de excitación puede escribirse como una combinación lineal de excitaciones simples, dobles,...

Continuar leyendo...

Nuevo Método para Controlar la Superconductividad con Corriente de Espín

Como hemos visto anteriormente, la superconductividad es la propiedad de algún material de conducir la electricidad sin ninguna resistencia. Se pueden utilizar distintos materiales, con la principal diferencia de la temperatura de transición, que puede ser en algún caso una temperatura elevada (en realidad no tan elevada por ahora, sólo 63 K, la temperatura del nitrógeno líquido). Más allá de estos metales especiales, los superconductores basados en el hierro han mostrado fenómenos intrigantes relacionados con la coexistencia del magnetismo y la superconductividad por debajo de la temperatura de transición superconductora. El origen de estos fenómenos sigue siendo objeto de debate, y estudios recientes han mostrado nuevas fases antiferromagnéticas que coexisten con la superconductividad y han informado que la superconducción puede ser suprimida por el campo magnético. La posibilidad de...

Continuar leyendo...

Según un Nuevo Experimento, la Flecha del Tiempo no es tan Absoluta

El tiempo es una propiedad tan básica de nuestro universo físico que parece que se definiría fácil y claramente en cualquier modelo de física. Sin embargo, si se examina con más detenimiento, el tiempo es una propiedad difícil de precisar y delimitar, y nuestras concepciones "de sentido común" del tiempo pueden no ser tan fiables como podríamos suponer. En consecuencia, una cuestión muy importante y pendiente en la ciencia es: ¿qué es el tiempo?

Tanto la mecánica cuántica como la relatividad general, las dos teorías predominantes de la física moderna, coinciden en que, fundamentalmente, no hay una dirección preferida del tiempo: en la mecánica cuántica, las transformaciones e interacciones de las partículas tienen el mismo aspecto tanto si se producen "hacia delante" como "hacia atrás" en el tiempo, una propiedad conocida como...

Continuar leyendo...

La Liquidez de los Materiales Granulares

física de materiales Dec 22, 2017

Es fácil caminar por la arena de una playa. Pero pisar una piscina de bolas es enseguida más difícil. Tanto la arena como las piscinas de bolas son materiales granulares. Este tipo de materiales están formados por conjuntos de pequeñas partículas o granos. Su particularidad es que pueden comportarse como sólidos o líquidos en función de su densidad y otros parámetros físicos.

La física de los materiales granulares es compleja y en las últimas décadas se han propuesto muchos modelos. Sin embargo, la industria utiliza mucho estas propiedades físicas para procesar materiales utilizando, por ejemplo, "lechos fluidizados". Estos lechos particulares están formados por una mezcla de fluido y sólido y presentan propiedades similares a las de los fluidos. Se considera una mezcla heterogénea de fluido y sólido que puede representarse mediante una única...

Continuar leyendo...

Invención de un Componente Esencial para los Computadores Cuánticos

Por: Dr. Olivier Alirol, Físico de Resonance Science Foundation 

Una de las dificultades de fabricar sistemas cuánticos es que los qubits deben mantenerse coherentes durante todo el proceso. Así, debido a la tecnología actual, los qubits deben estar muy cerca unos de otros, a una distancia entre 10 y 20 nm, para poder comunicarse. Esto deja poco espacio para colocar la electrónica necesaria para que un computador cuántico funcione. Y una de estas partes esenciales para hacer un circuito funcional es el circulador.

El circulador, al igual que el aislante, es crucial en los sistemas de comunicación para la manipulación de las señales. Por ejemplo, en el caso de una señal de RF, el aislador puede utilizarse para proteger a otros componentes de RF de una reflexión excesiva de la señal. Por otro lado, el circulador de RF suele utilizarse para controlar la dirección del flujo de la...

Continuar leyendo...

La Disposición Especial de la Materia en las Biomoléculas Protege la Coherencia Cuántica

Se han producido fotones cuánticos entrelazados en una clase de macromoléculas biológicas conocidas como proteínas verdes fluorescentes (derivadas de organismos bioluminiscentes como las medusas). Además de producir fotones entrelazados, se descubrió que la estructura y la forma de la proteína verde fluorescente (GFP) protegían los fotones de la decoherencia por fuentes ambientales. El reciente experimento ha dado un vuelco al pensamiento convencional reinante sobre la posibilidad de estados cuánticos no triviales en el sistema biológico.

"Las proteínas fluorescentes (FPs) han recibido una importante atención en la investigación biomédica (microscopía de fluorescencia, dinámica intracelular y tecnología de genes reporteros) debido a su alta eficiencia cuántica en los procesos de absorción-emisión, y a su capacidad para fusionarse con otras...

Continuar leyendo...

Nueva Comprensión del Mecanismo de los Superconductores de Alta Temperatura

física cuántica Dec 20, 2017

Desde que en 1986 se descubriera la superconductividad de alta temperatura en los compuestos de óxido de cobre denominados cupratos, los científicos han tratado de entender cómo estos materiales pueden conducir la electricidad sin resistencia a temperaturas cientos de grados por encima de las temperaturas ultrabajas que requieren los superconductores convencionales. Estas propiedades, más allá de ser un verdadero reto científico, tienen también un enorme interés para fines industriales, ya que permiten un ahorro potencialmente enorme en la generación y el transporte de electricidad.

Uno de los mejores materiales candidatos a superconductor de alta temperatura siguen siendo los cupratos. Los resultados recientes sugieren que la causa del fenómeno está relacionada con las franjas fluctuantes. Los experimentos han establecido que las franjas de carga son universales en los superconductores de cupratos...

Continuar leyendo...

Nueva Forma de Crear un Monopolo Magnético

En la teoría de Maxwell, sólo faltaba una pieza para una simetría perfecta entre las fuerzas eléctricas y magnéticas, los monopolos magnéticos. Como demostró teóricamente Dirac, la existencia de este único monopolo magnético explicaría la cuantización de la carga eléctrica en todo el Universo. Desde entonces, la búsqueda de estos monopolos magnéticos -como partículas elementales reales o cuasipartículas efectivas- ha sido una gran preocupación para los físicos y es de gran importancia. Su existencia o descubrimiento podría conducir a la unificación de las interacciones fundamentales, otro gran problema de nuestro siglo.

A pesar de la falta de pruebas experimentales de los monopolos elementales en la naturaleza, los monopolos magnéticos pueden surgir de forma indirecta o matemática. Por ejemplo, la rotación nuclear de...

Continuar leyendo...
Close

50% Complete

Two Step

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.